how to prove or disprove the following :-
$$\gcd (kn,km) = k\gcd(n,m).$$
$$\operatorname{lcm}(n,m)\gcd(n,m)=mn.$$
$$\operatorname{lcm}(kn,km)=k\operatorname{lcm}(n,m).$$
how to prove or disprove the following :-
$$\gcd (kn,km) = k\gcd(n,m).$$
$$\operatorname{lcm}(n,m)\gcd(n,m)=mn.$$
$$\operatorname{lcm}(kn,km)=k\operatorname{lcm}(n,m).$$
HINT $\rm\ \ d\ |\ (kn,km)/k \iff dk\ |\ (kn,km) \iff dk\ |\ kn,km \iff d\ |\ n,m \iff d\ |\ (n,m)$
Dually $\rm\ \ \ \ [kn,km]/k\ |\ d \iff [kn,km]\ |\ kd \iff kn,km\ |\ kd \iff n,m\ |\ d \iff [n,m]\ |\ d $
THEOREM $\rm\;\; (a,b)\ =\ ab/[a,b] \;\;$ if $\;\rm\ [a,b] \;$ exists.
Proof $\rm\ \ d\ |\ a,b \;\iff\; a,b\ |\ ab/d \;\iff\; [a,b]\ |\ ab/d \;\iff\; d\ |\ ab/[a,b]\ \ $ QED
These proofs use the universal definitions of GCD and LCM.