A non-trivial exponential function $E:\mathbb{K} \rightarrow \mathbb{K}$ in a field $\mathbb{K}$ is a function such that
\begin{split} E(x+y)=E(x)E(y) \quad \forall x,y \in \mathbb{K} \\ E(x)=1 \iff x=0 \end{split}
For the exponential function such that $E(1)=a \in \mathbb{K}$ write $E_a(X)=a^x$. We know that if $\mathbb{K}=\mathbb{Q}$ such a function can not be defined as $a^{\frac{m}{n}} $ can be irrational, and $E_a(x) \notin \mathbb{Q}$.
Call exponential extension of $\mathbb{Q}$ an extension of $\mathbb{Q}$ in which we can define an exponential function. We know that $\mathbb{R}/\mathbb{Q}$ and $\mathbb{C}/\mathbb{Q}$ are such exponential extension. But it can be shown that there is no exponential extension $\mathbb{E}/\mathbb{Q}$ whith $ \mathbb{E}\subset \mathbb{R}$ and $\mathbb{E}\ne \mathbb{R}$? I can not find such a demonstration.
(Sorry for my bad English).