2

A non-trivial exponential function $E:\mathbb{K} \rightarrow \mathbb{K}$ in a field $\mathbb{K}$ is a function such that

\begin{split} E(x+y)=E(x)E(y) \quad \forall x,y \in \mathbb{K} \\ E(x)=1 \iff x=0 \end{split}

For the exponential function such that $E(1)=a \in \mathbb{K}$ write $E_a(X)=a^x$. We know that if $\mathbb{K}=\mathbb{Q}$ such a function can not be defined as $a^{\frac{m}{n}} $ can be irrational, and $E_a(x) \notin \mathbb{Q}$.

Call exponential extension of $\mathbb{Q}$ an extension of $\mathbb{Q}$ in which we can define an exponential function. We know that $\mathbb{R}/\mathbb{Q}$ and $\mathbb{C}/\mathbb{Q}$ are such exponential extension. But it can be shown that there is no exponential extension $\mathbb{E}/\mathbb{Q}$ whith $ \mathbb{E}\subset \mathbb{R}$ and $\mathbb{E}\ne \mathbb{R}$? I can not find such a demonstration.

(Sorry for my bad English).

Emilio Novati
  • 62,675

2 Answers2

4

Let be $$\Bbb E_0=\Bbb Q$$ $$B_1=\{2^r\,|\, r\in\Bbb E_0\}$$ $$\Bbb E_1=\Bbb E_0(B_1)$$ $$B_2=\{2^r\,|\, r\in\Bbb E_1\}$$ $$\Bbb E_2=\Bbb E_1(B_2)$$ $$\cdots$$ $$\Bbb E=\bigcup_{n\in\Bbb N}\Bbb E_n$$ and $\Bbb E\ne\Bbb R$ because is countable.

0

Thank you very much! If I have well understood: for each $a \in \mathbb{Q}$ we can build a field $$ \mathbb{E}_a=\bigcup_{n=0}^{\infty}\mathbb{E}_{a,n} $$ such that $E: \mathbb{E}_a \rightarrow \mathbb{E}_a$, $E_a(x)=a^x \quad \forall x \in \mathbb{E}_a$ is a well defined exponential function. Now the problem becomes: the field closures of the sets $$ \mathbb{E}=\bigcup_{a \in\mathbb{Q}}\mathbb{E}_a \varsubsetneq \mathbb{C} \qquad \mbox{ and } \qquad \mathbb{E}^+=\bigcup_{a \in\mathbb{Q}^+}\mathbb{E}_a \varsubsetneq \mathbb{R} $$ are are proper subsets of $\mathbb{C}, \mathbb{R}$ ?

And I get a further question: the Napier's constant $e$ is an element of $\mathbb{E}^+$? And, more generally, there is a method to determine if a transcendental number $ \in \mathbb{E}$?

Emilio Novati
  • 62,675