I have seen an interesting question on stackexchange, which I would like to requote so that I can understand the answer =)
$\lim\limits_{n\to\infty} \dfrac{1^{99} + 2^{99} + \cdots + n^{99}}{n^{100}}$
How can the numerator be expressed as an integral?
$= \lim\limits_{n\to\infty} \dfrac{1^{99} + 2^{99} + \cdots + n^{99}}{n^{100}}$
$=\lim\limits_{n\to\infty} \frac{\sum\limits_{k=1\to n} k^{99} }{n^{100}}$
$=\lim\limits_{n\to\infty} \frac{\sum\limits_{k=1\to n} k^{99} }{n^{100}}$
Any ideas?