There is another closely related recurrence that admits an exact
solution. Suppose we have $T(0)=0$ and $T(1)=1$ and for $n\ge 2$
$$T(n) = 2 T(\lfloor n/2 \rfloor) + n \lfloor \log_2 n \rfloor.$$
Furthermore let the base two representation of $n$ be
$$n = \sum_{k=0}^{\lfloor \log_2 n \rfloor} d_k 2^k.$$
Then we can unroll the recurrence to obtain the following exact
formula for $n\ge 2$
$$T(n) = 2^{\lfloor \log_2 n \rfloor}
+ \sum_{j=0}^{\lfloor \log_2 n \rfloor -1}
2^j \times (\lfloor \log_2 n \rfloor - j) \times
\sum_{k=j}^{\lfloor \log_2 n \rfloor} d_k 2^{k-j}
\\ = 2^{\lfloor \log_2 n \rfloor}
+ \sum_{j=0}^{\lfloor \log_2 n \rfloor -1}
(\lfloor \log_2 n \rfloor - j) \times
\sum_{k=j}^{\lfloor \log_2 n \rfloor} d_k 2^k.$$
Note that this formula produces matching values for the data at $n=2^j$
posted by the OP in the question, namely the sequence
$$1, 4, 16, 56, 176, 512, 1408, 3712\ldots$$
Now to get an upper bound consider a string of one digits to obtain
$$T(n) \le 2^{\lfloor \log_2 n \rfloor}
+ \sum_{j=0}^{\lfloor \log_2 n \rfloor -1}
(\lfloor \log_2 n \rfloor - j) \times
\sum_{k=j}^{\lfloor \log_2 n \rfloor} 2^k.$$
This simplifies to
$$\lfloor \log_2 n \rfloor^2 2^{\lfloor \log_2 n \rfloor}
+ \lfloor \log_2 n \rfloor 2^{\lfloor \log_2 n \rfloor}
- 2^{\lfloor \log_2 n \rfloor}
+ \lfloor \log_2 n \rfloor + 2.$$
This bound is actually attained and cannot be improved upon, just like
the lower bound, which occurs with a one digit followed by zeroes to
give
$$T(n) \ge
2^{\lfloor \log_2 n \rfloor}
+ \sum_{j=0}^{\lfloor \log_2 n \rfloor -1}
(\lfloor \log_2 n \rfloor - j) \times 2^{\lfloor \log_2 n \rfloor}.$$
This simplifies to
$$\frac{1}{2} \lfloor \log_2 n \rfloor^2 2^{\lfloor \log_2 n \rfloor}
+ \frac{1}{2} \lfloor \log_2 n \rfloor 2^{\lfloor \log_2 n \rfloor}
+ 2^{\lfloor \log_2 n \rfloor}.$$
Joining the dominant terms of the upper and the lower bound we obtain
the asymptotics
$$\lfloor \log_2 n \rfloor^2 \times
2^{\lfloor \log_2 n \rfloor}
\in \Theta\left((\log_2 n)^2 \times 2^{\log_2 n}\right)
= \Theta\left((\log n)^2 \times n\right).$$
The above would seem to be in agreement with what the Master theorem
would produce.
There are some additional calculations using this method at this
MSE link.