Consider the cyclic group $G=\langle a\rangle$ where $o(a)=n$ where $o(a)$ means order of $a$. I'd like to show: $$\langle a^k\rangle\leq \langle a^\ell\rangle\Leftrightarrow \gcd(\ell, n)\mid \gcd(k, n).$$
I have already done the implication $(\Rightarrow)$ as follows:
I know $$\displaystyle o(a^k)=\frac{n}{\gcd(k, n)}\quad \textrm{and}\quad \displaystyle o(a^\ell)=\frac{n}{\gcd(\ell, n)}.$$ By Lagrange's theorem if $\langle a^k\rangle\leq \langle a^\ell\rangle$ then $o(a^k)\mid o(a^\ell)$ hence $\gcd(\ell, n)\mid \gcd(k, n)$.
How can I show the opposite implication?
Thanks