I am having a hard time understanding the difference between the two statements,
$$\forall \epsilon >0 \ \exists N \ \in \mathbb{N} \ \forall n\ge N \ (|a_n-a| < \epsilon)$$ and
$$\exists N \in \mathbb{N} \ \forall \epsilon > 0 \ \forall n\ge N \ (|a_n-a| < \epsilon) $$
I can see the difference when I am trying to prove a limit (unless the sequence is constant) because I need to let $N$ depend on $\epsilon$. But when I say the first statement out loud, it seems like it explains what a convergent sequence is doing.
If there is a $N$ s.t. for any positive number you give me, any index greater than that $N$ implies the distance between our limit and the sequence is less than the positive number. What am I missing?