This is a standard infinite sequence problem.
It starts with just this:
$$\sum_{n=0}^\infty \frac{F_n}{2^n}=$$
$$\frac11+\frac12+\frac24+\frac38+\frac5{16}+\frac8{32}+...$$
let S equal the sequence of fractions:
$S=\frac11+\frac12+\frac24+\frac38+\frac5{16}+\frac8{32}+...$
Divide by 2 and get:
$\frac{S}2=\frac12+\frac14+\frac28+\frac3{16}+\frac5{32}+...$
Subtract the first from the second to get:
$S-\frac{S}2=1+\frac02+\frac14+\frac18+\frac2{16}+\frac3{32}+...$
Simplify:
$\frac{S}2=1+\frac14+\frac18+\frac2{16}+\frac3{32}+...$
Multiply both sides by two:
$S=2+\frac12+\frac14+\frac2{8}+\frac3{16}+...$
$2S=4+\frac11+\frac12+\frac24+\frac3{8}+...$
Recognize S from above:
$2S=4+S$
Subtract S from both sides:
$S=4$