Could you check my work please? Let me know if it's right or wrong.
We have the level surface $$f(x, y, z) = xyz -6$$
The normal vector is equal to the gradient, so at the point $(a, b, c)$ $$\nabla f = \langle f_x, f_y, f_z \rangle$$
$$\:\:\:\:\:\:\:=(yz, xz, xy)$$
$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=bc \: \vec{i} + ac \: \vec{j} + ab \: \vec{k}$$
The tangent plane is
$$ F_x(x_0, y_0, z_0)(x - x_0) + F_y(x_0, y_0, z_0)(y - y_0) + F_z(x_0, y_0, z_0)(z - z_0) = 0 $$
At the point $(a, b, c)$
$$ bc (x - a) + ac(y - b) + ab(z - c) = 0 $$
$$ bcx+acy+abz = 3abc $$