We have to prove the following result without expanding
$\left|\begin{array}{lll} a^3 & a^2 &1 \\ b^3 & b^2 &1\\ c^3 & c^2 &1 \end{array} \right|=(ab+bc+ca)\left|\begin{array}{lll} a^2 & a &1 \\ b^2 & b &1\\ c^2 & c &1 \end{array} \right|$
Progress :
$\left|\begin{array}{lll}
a^3 & a^2 &1 \\
b^3 & b^2 &1\\ c^3 & c^2 &1
\end{array}
\right|$
$
=\frac{1}{abc}\left|\begin{array}{lll}
a^3 & a^2 &abc \\
b^3 & b^2 &abc\\ c^3 & c^2 &abc
\end{array}
\right|$ by $abc\times C_3\rightarrow C_3'$
$=\left|\begin{array}{lll} a^2 & a &bc \\ b^2 & b & ca\\ c^2 & c &ab \end{array} \right|$ by $\frac{1}{a}\times R_1\rightarrow R_1',\frac{1}{b}\times R_2\rightarrow R_2', \frac{1}{c}\times R_3\rightarrow R_3'$ $=\left|\begin{array}{ccc} a^2+b^2+c^2 & a+b+c &ab+bc+ca\\ b^2 & b & ca\\ c^2 & c &ab \end{array} \right|$ by $ R_1+R_2+R_3\rightarrow R_1' $
Any one tell me how can I show the required result?