I am trying to prove this identity: $$\sum_{v=0}^{n}\frac{(2n)!}{(v!)^2(n-v)!^2}={2n \choose n}^2$$ I think this identity (corollary of Vandermonde identity): $${n\choose 0}^2+{n\choose 1}^2+{n\choose 2}^2+\cdots+{n\choose n}^2={2n \choose n}$$ is applicable for solving it. Please give me some hints. thank you
-
1Is it $(2n!)$ or $(2v!)$ or $(2n)!$ or $(2v)!$ ? And it's Vandermonde, by the way. – Lucian Oct 21 '14 at 06:13
-
I corrected it, thank you. – linmu Oct 21 '14 at 06:22
-
4The summands are $\displaystyle\binom{2n}{n}\cdot\binom{n}{v}^2$. – anon Oct 21 '14 at 06:26
1 Answers
Vandermonde's identity says
$${(m+n)\choose r} = \sum_{k=0}^{r} {m\choose k}{n\choose (r-k)}$$
Put $m = n$, $n = n$, and $r = n$.
You get$$ {(2n)\choose n} = {n\choose 0}{n\choose n}+{n\choose 1}{n\choose (n-1)}+\cdots + {n\choose n}{n\choose n}$$
$${(2n)\choose n} = {(n)\choose 0}^2+{(n)\choose 1}^2+\cdots+{(n)\choose n}^2\tag1$$
From your expression when expanded gives
$$\frac{(2n)!}{n!^2} + \frac{(2n)!}{((n-1)!)^2} +\frac{(2n)!}{(2!(n-2)!)^2} +\cdots+\frac{(2n)!}{(n!n!)^2}$$
Muptiply and divide by $(n!)^2$
$$\frac{(2n)!}{n!^2}\left(\frac{n!^2}{n!^2}+\frac{n!^2}{1!.(n-1)!)^2}+\frac{n!^2}{(2!.(n-2)!)^2}+\cdots+ \frac{n!^2}{n!^2}\right)$$
This reduces to $${2n\choose n}\left({n\choose 0}^2+{n\choose 1}^2+\cdots+{n\choose n}^2\right)$$
From (1) we get $${2n\choose n}.{2n\choose n}$$
$$({2n\choose n})^2$$

- 11,984
-
It is used this identity ,${2n\choose n}=\frac{(2n)!}{n!^2}$, a prove of it, is available here. http://math.stackexchange.com/questions/78533/prove-that-2n-n2-is-even-if-n-is-a-positive-integer Thank you so much for your reply. – linmu Oct 21 '14 at 13:38
-