How to prove that: $$ 8^{18}-1\equiv0\pmod7 $$ In the simplest way?
Asked
Active
Viewed 3,567 times
2
-
2Use http://math.stackexchange.com/questions/188657/why-an-bn-is-divisible-by-a-b – lab bhattacharjee Oct 19 '14 at 17:40
4 Answers
8
Hint: $$ 8 \equiv 1 \mod 7\ \ \text{and}\ \ a^n \equiv b^n \mod m$$ Given any $a,b \in \mathbb{Z}, \ \ m > 1$ and $n \geq 1$ such that $a \equiv b \mod m$.

Aaron Maroja
- 17,571
0
Ok, I found overall formula: $$ a^n \equiv b^n \pmod {a-b} $$ hence: $$ 8^{18} \equiv 1^{18} \pmod {8-1} $$
$$ 8^{18} - 1 \equiv 0 \pmod {8-1} $$

Reptile
- 41