Let $p$ be a prime number. For any $1 ≤ r ≤ p − 1$, prove that $${p \choose r} ≡ 0 \pmod p$$
I'm thinking that it suffices to show $p$ divides ${p \choose r}$. So then:
$$\begin{align} p\ |\ {p \choose r} &= p\ |\ {p!\over r!(p - r)!} \\ &= p\ |\ p!{1\over r!(p - r)!} \\ &= p\ |\ p(p - 1)!{1\over r!(p - r)!} \\ &= p\ |\ p{(p - 1)!\over r!(p - r)!} \end{align}$$
Thus $\displaystyle p\ |\ {p \choose r}$.
But this seems a little too simple to me. Is this really it, or have I missed something? Thanks for any help!