The following is a partial answer to the first question.
For any real number $a\in\mathbb{R}$ and any two complex numers $z_1,z_2\in\mathbb{C}$, the operations $\Re{(\cdot)}$ and $\Im{(\cdot)}$ obey the following algebraic properties:
$$\begin{cases}
\Re{(z_1)}:=\frac{z_1+\bar{z_1}}{2}\\
\Im{(z_1)}:=\frac{z_1-\bar{z_1}}{2i}\\
\Re{(z_1+z_2)}=\Re{(z_1)}+\Re{(z_2)}\\
\Im{(z_1+z_2)}=\Im{(z_1)}+\Im{(z_2)}\\
\Re{(az_1)}=a\,\Re{(z_1)}\\
\Im{(az_1)}=a\,\Im{(z_1)}\\
\Re{(iz_1)}=-\Im{(z_1)}\\
\Im{(iz_1)}=\Re{(z_1)}.\\
\end{cases}$$
Using the above properties, we may simplify $\Re{(c)}$ as follows:
$$\begin{align}
\Re{(c)}
&=\Re{\left[\operatorname{Li}_{2}{\left(\frac34+i\frac{\sqrt{3}}{4}\right)}+\frac{1+i\sqrt{3}}{3}\operatorname{Li}_{2}{\left(1-i\frac{\sqrt{3}}{3}\right)}+\frac{1-i\sqrt{3}}{3}\operatorname{Li}_{2}{\left(\frac12+i\frac{\sqrt{3}}{6}\right)}\right]}\\
&=\Re{\left[\operatorname{Li}_{2}{\left(\frac34+i\frac{\sqrt{3}}{4}\right)}\right]}+\Re{\left[\frac{1+i\sqrt{3}}{3}\operatorname{Li}_{2}{\left(1-i\frac{\sqrt{3}}{3}\right)}\right]}\\
&~~~~~ +\Re{\left[\frac{1-i\sqrt{3}}{3}\operatorname{Li}_{2}{\left(\frac12+i\frac{\sqrt{3}}{6}\right)}\right]}\\
&=\Re{\left[\operatorname{Li}_{2}{\left(\frac34+i\frac{\sqrt{3}}{4}\right)}\right]}+\frac13\Re{\left[\operatorname{Li}_{2}{\left(1-i\frac{\sqrt{3}}{3}\right)}\right]}-\frac{1}{\sqrt{3}}\Im{\left[\operatorname{Li}_{2}{\left(1-i\frac{\sqrt{3}}{3}\right)}\right]}\\
&~~~~~ +\frac13\Re{\left[\operatorname{Li}_{2}{\left(\frac12+i\frac{\sqrt{3}}{6}\right)}\right]}+\frac{1}{\sqrt{3}}\Im{\left[\operatorname{Li}_{2}{\left(\frac12+i\frac{\sqrt{3}}{6}\right)}\right]}.\\
\end{align}$$
Now, Landen's dilogarithm identity states:
$$\operatorname{Li}_{2}{\left(z\right)}=-\operatorname{Li}_{2}{\left(\frac{z}{z-1}\right)}-\frac12\ln^2{\left(1-z\right)};~z\notin[1,\infty).$$
Then, letting $z=\frac34+i\frac{\sqrt{3}}{4}$ we have $\frac{z}{z-1}=-i\,\sqrt{3}$, and thus:
$$\begin{align}
\operatorname{Li}_{2}{\left(\frac34+i\frac{\sqrt{3}}{4}\right)}
&=-\operatorname{Li}_{2}{\left(-i\,\sqrt{3}\right)}-\frac12\ln^2{\left(\frac14-i\frac{\sqrt{3}}{4}\right)}\\
&=-\operatorname{Li}_{2}{\left(-i\,\sqrt{3}\right)}-\frac12\ln^2{\left(\frac12e^{-\frac{i\pi}{3}}\right)}\\
&=-\operatorname{Li}_{2}{\left(-i\,\sqrt{3}\right)}-\frac12\left(\ln{\left(\frac12\right)}-\frac{i\pi}{3}\right)^2\\
&=-\operatorname{Li}_{2}{\left(-i\,\sqrt{3}\right)}-\frac12\left(-\ln{\left(2\right)}-\frac{i\pi}{3}\right)^2\\
&=-\operatorname{Li}_{2}{\left(-i\,\sqrt{3}\right)}-\frac12\left(-\frac{\pi^2}{9}+\ln^2{\left(2\right)}+\frac{2i\pi\ln{(2)}}{3}\right)\\
&=-\operatorname{Li}_{2}{\left(-i\,\sqrt{3}\right)}+\frac{\pi^2}{18}-\frac{\ln^2{\left(2\right)}}{2}-\frac{i\pi\ln{(2)}}{3}\\
&=\frac{\pi^2}{18}-\frac{\ln^2{\left(2\right)}}{2}-\frac{i\pi\ln{(2)}}{3}-\operatorname{Li}_{2}{\left(-i\,\sqrt{3}\right)}.\\
\end{align}$$
Taking the real component of this dilogarithmic term yields:
$$\begin{align}
\Re{\left[\operatorname{Li}_{2}{\left(\frac34+i\frac{\sqrt{3}}{4}\right)}\right]}
&=\Re{\left[\frac{\pi^2}{18}-\frac{\ln^2{\left(2\right)}}{2}-\frac{i\pi\ln{(2)}}{3}-\operatorname{Li}_{2}{\left(-i\,\sqrt{3}\right)}\right]}\\
&=\frac{\pi^2}{18}-\frac{\ln^2{\left(2\right)}}{2}-\Re{\left[\operatorname{Li}_{2}{\left(-i\,\sqrt{3}\right)}\right]}\\
&=\frac{\pi^2}{18}-\frac{\ln^2{\left(2\right)}}{2}-\frac{\operatorname{Li}_{2}{\left(-i\,\sqrt{3}\right)}+\overline{\operatorname{Li}_{2}{\left(-i\,\sqrt{3}\right)}}}{2}\\
&=\frac{\pi^2}{18}-\frac{\ln^2{\left(2\right)}}{2}-\frac{\operatorname{Li}_{2}{\left(-i\,\sqrt{3}\right)}+\operatorname{Li}_{2}{\left(\overline{-i\,\sqrt{3}}\right)}}{2}\\
&=\frac{\pi^2}{18}-\frac{\ln^2{\left(2\right)}}{2}-\frac{\operatorname{Li}_{2}{\left(-i\,\sqrt{3}\right)}+\operatorname{Li}_{2}{\left(i\,\sqrt{3}\right)}}{2}\\
&=\frac{\pi^2}{18}-\frac{\ln^2{\left(2\right)}}{2}-\frac{\operatorname{Li}_{2}{\left(-3\right)}}{4},\\
\end{align}$$
where in going from the third to the fourth line we've used the mirror symmetry of the dilogarithm, and to obtain the last line we've used the dilogarithmic identity,
$$\operatorname{Li}_{2}{\left(z\right)}+\operatorname{Li}_{2}{\left(-z\right)}=\frac12\operatorname{Li}_{2}{\left(z^2\right)}.$$
One more dilogarithmic identity we shall need relates the dilogarithms of reciprocal arguments:
$$\operatorname{Li}_{2}{\left(z\right)}=-\operatorname{Li}_{2}{\left(\frac{1}{z}\right)}-\frac12\ln^2{(-z)}-\frac{\pi^2}{6};~z\notin[0,1].$$
Hence,
$$\begin{align}
\Re{\left[\operatorname{Li}_{2}{\left(\frac34+i\frac{\sqrt{3}}{4}\right)}\right]}
&=\frac{\pi^2}{18}-\frac{\ln^2{\left(2\right)}}{2}-\frac{\operatorname{Li}_{2}{\left(-3\right)}}{4}\\
&=\frac{\pi^2}{18}-\frac{\ln^2{\left(2\right)}}{2}-\frac{-\operatorname{Li}_{2}{\left(-\frac13\right)}-\frac12\ln^2{(3)}-\frac{\pi^2}{6}}{4}\\
&=\frac{7\pi^2}{72}+\frac{\ln^2{(3)}}{8}-\frac{\ln^2{\left(2\right)}}{2}+\frac14\operatorname{Li}_{2}{\left(-\frac13\right)}.\\
\end{align}$$