Let $H$ be a Hilbert space, $M$ its linear subspace, and $p_M$ the projection onto $M$. Prove the following: for every $v \in H$ and every $u \in M$, $$\|v-p_Mv \| \leq \|v-u\|$$ with equality only if $u=p_Mv$.
Attempted Proof: $$\|v-p_Mv\|=\|v-u+u-p_Mv\| \leq \|v-u\|+\|u-p_Mv\|$$
Note that $p_Mv=\frac{u\cdot v}{\|v\|^2}v$ for all $u \in M$. So $\|u-p_Mv\|=\|u-\frac{u\cdot v}{\|v\|^2}v\|$. But if we notice this norm is the norm of the vector component of u perpendicular to v. How do I show that $\|u-\frac{u\cdot v}{\|v\|^2}v\|=0$?