I'm facing with the following problem:
Find all $(h,k)$ such that $$2^h \equiv 1 ~(\text{mod}~ 3^k) ~~~~~~~~(1)$$ and $$2^h \geq 3^k+1 ~~~~~~~~(2).$$
I'm just able to prove that the $(1)$ holds for all $(h,k) = (2a, 1)$, where $a$ is an integer. Indeed:
$$2^{2a} \equiv 1 ~(\text{mod}~ 3^1) \Rightarrow 4^a \equiv 1 ~(\text{mod}~ 3) \Rightarrow $$ $$\Rightarrow 4^{a-1} + 3 \cdot 4^{a-1} \equiv 1 ~(\text{mod}~ 3) \Rightarrow 4^{a-1} \equiv 1 ~(\text{mod}~ 3) \Rightarrow $$ $$\Rightarrow 4^{a-2} + 3 \cdot 4^{a-2} \equiv 1 ~(\text{mod}~ 3) \Rightarrow 4^{a-2} \equiv 1 ~(\text{mod}~ 3) \Rightarrow $$ $$\ldots$$ $$\Rightarrow 4^0 + 3 \cdot 4^0 \equiv 1 ~(\text{mod}~ 3) \Rightarrow 4^0 = 1 \equiv 1 ~(\text{mod}~ 3)$$
In this case, the $(2)$ is always satisfied since:
$$2^{2a} = 4^a \geq 3^1 + 1 = 4.$$
How can I proceed in order to find other $(h,k)$ couples? Or maybe, are these couples the only ones that satisfy my problem?