From the answer of this OP: Ramanujan log-trigonometric integrals, I found the following formula
$$\begin{align} & \int_{0}^{+\infty} u^{s-1} \cos (a u) \:e^{-b u}\:\mathrm{d}u = \Gamma (s)\frac{\cos \left(\! s \arctan \left(\frac{a}{b}\right)\right)}{(a^2+b^2)^{s/2}}, \, \left(\Re(s)>0, b>0, a>0 \right) \end{align}$$
How one proves that formula? I am interested in knowing the approach without using contour integration method. Thanks in advance.