1

I have to calculate the limit $\lim_{n\to +\infty} n(a^{1/n} -1)$.

I found that it tends to $a$ but don't really see how to prove it with one or 2 steps... Can you please help me out ?

amWhy
  • 209,954

2 Answers2

3

Set $\dfrac1x=h$

$$F=\lim_{n\to\infty}n(a^{\frac1n}-1)=\lim_{h\to0}\frac{a^h-1}h$$

Now, $a=e^{\ln a}\implies a^h=(e^{\ln a})^h=e^{h\ln a}$

$$\implies F=\ln a\lim_{h\to0}\frac{e^{h\ln a}-1}{h\ln a}=?$$

0

If $f(x)=a^x$, then $$ \log a=f'(0)=\lim_{h\to 0}\frac{a^h-1}{h}=\lim_{n\to \infty}\frac{a^{1/n}-1}{1/n} =\lim_{n\to \infty}n(a^{1/n}-1). $$