0

How would you solve the following limit?

$$\lim\limits_{n\to \infty}\left(\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)\cdots\left(1-\frac{1}{n^2}\right)\right)$$

I think that the limit is $0$, because $\frac{1}{n^2}$, and also as $n$ increases the value of $1-\frac{1}{n^2}$ decreases, so the limit is zero.

But how can I show this mathematically, or is the only way I can show this? Thanks in advance for your reply.

wonderingdev
  • 1,761

2 Answers2

14

$$\begin{align}\lim_{n\to\infty}\prod_{k=2}^{n}\left(1-\frac{1}{k^2}\right)&=\lim_{n\to\infty}\prod_{k=2}^{n}\frac{(k-1)(k+1)}{k^2}\\&=\lim_{n\to\infty}\frac{\left(\prod_{k=2}^{n}(k-1)\right)\left(\prod_{k=2}^{n}(k+1)\right)}{\prod_{k=2}^{n}k^2}\\&=\lim_{n\to\infty}\frac{(n-1)!\left(\frac{(n+1)!}{2!}\right)}{(n!)^2}\\&=\lim_{n\to\infty}\frac{(n-1)!(n+1)!}{2!\cdot n!\cdot n!}\\&=\lim_{n\to\infty}\frac{n+1}{2n}\\&=\lim_{n\to\infty}\frac{1+\frac 1n}{2}\\&=\frac 12.\end{align}$$

mathlove
  • 139,939
5

Hint

Observe that

$$1-\frac1{n^2}=\frac{\frac{n-1}{n}}{\frac{n}{n+1}}$$

and now telescope using the product.