8

What approaches can be used for finding the following type of integrals: $$\int\limits_0^{\frac{\pi }{2}} {{x^3}\,{\ln }^2\left( {\sin x} \right)dx} \ \text{ or }\ \int_0^\frac{\pi}{2}x^3\ln^2(\cos x)dx \ ?$$

In this paper about Generalized log-sine integrals and Bell polynomials by Derek Orr is presented a popular approach to it, which consists of considering the following integral: $$\int_0^\frac{\pi}{2}x^n \sin^{2m} x\,dx$$ And derivating under the integral sign with respect to $m$ several times (see from page $8$).

Some results which yields using the above are: $$\int_0^\frac{\pi}{2}x\ln^2(\sin x)dx=\frac18\left(\frac{11\pi^4}{360}+\pi^2\ln^2 2-7\zeta(3)\ln 2+4\zeta(\bar 3,1)\right)$$ $$\int_0^\frac{\pi}{2}x^3\ln^2(\sin x)dx$$$$=\frac{1}{64}\left(\frac{23\pi^6}{420}+\pi^4\ln^2 2+24\pi^2 \zeta(\bar 3,1)-48\zeta(\bar 5,1)-24\zeta^2(3)-18\pi^2\zeta(3)\ln 2+93\zeta(5)\ln 2\right)$$

Are there other ways to solve those integrals?

Zacky
  • 27,674
xuce1234
  • 1,330
  • 7
  • 12

1 Answers1

14

Result:

For your first integral, I obtained the following simplification: \begin{align}\color{#FF4F00}{\int^{\frac{\pi}{2}}_0x^3\ln^2(\sin{x})\ {\rm d}x=-\frac{187\pi^6}{26880}-\frac{3}{4}\zeta(\bar{5},1)+\frac{93}{64}\zeta(5)\ln{2}+\frac{3\pi^2}{4}{\rm Li}_4\left(\tfrac{1}{2}\right)-\frac{\pi^4}{64}\ln^2{2}-\frac{3}{8}\zeta^2(3)+\frac{3\pi^2}{8}\zeta(3)\ln{2}+\frac{\pi^2}{32}\ln^4{2}}\end{align}


Derivation:

I will start off with the evaluation of $\displaystyle\int^{\frac{\pi}{2}}_0x^3\ln(\sin{x})\ {\rm d}x$. \begin{align} \int^{\frac{\pi}{2}}_0x^3\ln(\sin{x})\ {\rm d}x &=-\ln{2}\int^{\frac{\pi}{2}}_0x^3\ {\rm d}x-\sum^\infty_{n=1}\frac{1}{n}\int^{\frac{\pi}{2}}_0x^3\cos(2nx)\ {\rm d}x\tag1\\ &=-\frac{\pi^4}{64}\ln{2}+\frac{3\pi^2}{16}\sum^\infty_{n=1}\frac{(-1)^{n-1}}{n^3}-\frac{3}{8}\sum^\infty_{n=1}\frac{\left[1+(-1)^{n-1}\right]}{n^5}\tag2\\ &=-\frac{\pi^4}{64}\ln{2}+\frac{9\pi^2}{64}\zeta(3)-\frac{93}{128}\zeta(5)\tag3\\ \end{align} Note that $$\ln^2(\sin{x})={\rm Re}\ln^2(1-e^{i2x})-2\ln{2}\ln(\sin{x})+\left(x-\frac{\pi}{2}\right)^2-\ln^2{2}\tag4$$ Using this identity on the first integral, \begin{align} &\small{\int^{\frac{\pi}{2}}_0x^3\ln^2(\sin{x})\ {\rm d}x}\\ =&\small{{\rm Re}\int^{\frac{\pi}{2}}_0x^3\ln^2(1-e^{i2x})\ {\rm d}x+\underbrace{\frac{\pi^6}{3840}+\frac{93}{64}\zeta(5)\ln{2}+\frac{\pi^4}{64}\ln^2{2}-\frac{9\pi^2}{32}\zeta(3)\ln{2}}_{\text{Let this be $\mathcal{K}$}}}\tag5\\ =&\small{\frac{1}{16}{\rm Re}\int^{-1}_1\frac{\ln^3{z}\ln^2(1-z)}{z}{\rm d}z+\mathcal{K}}\tag6\\ =&\small{\frac{1}{16}\underbrace{\int^1_0\frac{\ln^3{z}\ln^2(1+z)}{z}{\rm d}z}_{\mathcal{I}_1}-\frac{3\pi^2}{16}\underbrace{\int^1_0\frac{\ln{z}\ln^2(1+z)}{z}{\rm d}z}_{\mathcal{I}_2}-\frac{1}{16}\underbrace{\int^1_0\frac{\ln^3{z}\ln^2(1-z)}{z}{\rm d}z}_{\mathcal{I}_3}+\mathcal{K}\tag7} \end{align} I am unable to find a closed form for $\mathcal{I}_1$ (I doubt there is one but feel free to prove me wrong), so I have no choice but to express it as a multiple zeta value. \begin{align} \mathcal{I}_1 &=-\frac{1}{2}\int^1_0\frac{\ln^4{z}\ln(1+z)}{1+z}{\rm d}z\tag8\\ &=-\frac{1}{2}\sum^\infty_{n=1}(-1)^{n+1}H_n\int^1_0z^n\ln^4{z}\ {\rm d}z\tag9\\ &=-12\sum^\infty_{n=1}\frac{(-1)^{n+1}H_n}{(n+1)^5}\\ &=-12\zeta(\bar{5},1) \end{align} $\mathcal{I}_2$ can be handled, but its evaluation is very lengthy so I will simply use a previous result derived from another post. \begin{align} \mathcal{I}_2 &=-\int^1_0\frac{\ln^2{z}\ln(1+z)}{1+z}{\rm d}z\tag{10}\\ &=\sum^\infty_{n=1}(-1)^{n}H_n\int^1_0z^n\ln^2{z}\ {\rm d}z\tag{11}\\ &=2\sum^\infty_{n=1}\frac{(-1)^{n+1}H_n}{n^3}-2\sum^\infty_{n=1}\frac{(-1)^{n+1}}{n^4}\\ &=-4{\rm Li}_4\left(\tfrac{1}{2}\right)+\frac{\pi^4}{24}-\frac{7}{2}\zeta(3)\ln{2}+\frac{\pi^2}{6}\ln^2{2}-\frac{1}{6}\ln^4{2}\tag{12}\\ \end{align} $\mathcal{I}_3$ is the easiest of the three integrals. \begin{align} \mathcal{I}_3 &=\frac{1}{2}\int^1_0\frac{\ln^4{z}\ln(1-z)}{1-z}{\rm d}z\tag{13}\\ &=-12\sum^\infty_{n=1}\frac{H_n}{(n+1)^5}\tag{14}\\ &=-\frac{\pi^6}{105}+6\zeta^2(3)\tag{15}\\ \end{align} Combining these results, we obtain \begin{align}\color{#FF4F00}{\int^{\frac{\pi}{2}}_0x^3\ln^2(\sin{x})\ {\rm d}x=-\frac{187\pi^6}{26880}-\frac{3}{4}\zeta(\bar{5},1)+\frac{93}{64}\zeta(5)\ln{2}+\frac{3\pi^2}{4}{\rm Li}_4\left(\tfrac{1}{2}\right)-\frac{\pi^4}{64}\ln^2{2}-\frac{3}{8}\zeta^2(3)+\frac{3\pi^2}{8}\zeta(3)\ln{2}+\frac{\pi^2}{32}\ln^4{2}}\end{align} A similar methodology can be used to simplify your other integral. Note that this isn't exactly a closed form due to the multiple zeta value.


Explanation:
$(1): \text{Use the Fourier series expansion of $\ln(\sin{x})$.}$
$(2): \text{Integrate by parts.}$
$(5): \text{Apply $(3)$ and $(4)$.}$
$(6): \text{Let $z=e^{i2x}$.}$
$(7): \text{Extract the real part.}$
$(8): \text{Integrate by parts.}$
$(9): \text{Expand using the generating function of $H_n$.}$
$(10): \text{Integrate by parts.}$
$(11): \text{Expand using the generating function of $H_n$.}$
$(12): \text{See}$ here.
$(13): \text{Integrate by parts.}$
$(14): \text{Expand using the generating function of $H_n$.}$
$(15): \text{See}$ here.

M.N.C.E.
  • 10,439