Prove that $1+r+r^{2}+...+r^{n-1}=\frac{r^{n}-1}{r-1}$, $r$ a positive integer, $r \neq 1$
Asked
Active
Viewed 93 times
4 Answers
4
$S=1+r+...r^{n-1}$
$rS= r+...r^{n}$
therefore
$rS-S=r^n-1$ which means $S=\frac{r^n-1}{r-1}$
2
Note that for $r \neq 1$, $(r-1)(1+r+r^2+...+r^{n-1}) = r^n -1$, now just divide each side by $r-1$.

Mustafa Said
- 4,137
0
$\dfrac{r^n - 1}{r-1} = \dfrac{r^n - r^{n-1}}{r-1} + \dfrac{r^{n-1} - r^{n-2}}{r-1} + ...+ \dfrac{r - 1}{r-1} = r^{n-1} + r^{n-2} + ... + 1$

DeepSea
- 77,651