When I tried to solve this integral: $$\int_0^\infty {\frac{{{x^3}}}{{1 + {e^x}}}} \;{\rm{d}}x$$ I had trouble computing the sieries: $$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4}$$ Thanks.
Asked
Active
Viewed 811 times
3
-
1Related: http://math.stackexchange.com/questions/1169861/use-sum-n-1-infty-frac1n4-frac-pi490-to-compute-sum-n-1, and also http://math.stackexchange.com/questions/1074582 – Watson Jan 27 '17 at 20:47
2 Answers
6
$$\sum_{n=1}^{+\infty}\frac{(-1)^n}{n^4} = -\sum_{n=1}^{+\infty}\frac{1}{n^4}+2\sum_{m=1}^{+\infty}\frac{1}{(2m)^4} = \left(-1+\frac{2}{16}\right)\sum_{n=1}^{+\infty}\frac{1}{n^4}=-\frac{7}{8}\zeta(4) = -\frac{7\pi^4}{720}.$$

Jack D'Aurizio
- 353,855
-
1And many nice ways to show $\zeta(4) = \frac{\pi^4}{90}$ are given in this post: http://math.stackexchange.com/questions/28329/nice-proofs-of-zeta4-pi4-90 . I find the proof using Parseval's identity especially nice. – Travis Willse Oct 10 '14 at 14:00
-
1
5
From the definition of the polylogarithm, we have that $$\sum_{n=1}^{\infty} \frac{(-1)^n}{n^4}=\mathrm{Li}_4(-1).$$
Since $\mathrm{Li}_s(-1)=-\eta(s)$, we then seek to evaluate $-\eta(4)$. This is easy, as
$$\eta(s)=(1-2^{1-s})\zeta(s).$$
This would imply that
$$-\eta(4)=-(1-2^{-3})\zeta(4),$$
and since $\zeta(4) = \pi^4/90$, we have
$$-\eta(4)=-\frac{7\pi^4}{720}.$$
Note that $\eta(s)$ denotes the Dirichlet eta function.

Gahawar
- 768