If a function $f(x) = x^2 \sin (\frac{1}{x}), x \neq 0$ and $f(0) = 0$, how do I show this function is differentiable on $\mathbb{R}.$
--Edit
I have tried to find the limit when $x \neq 0$ and got this. The definition of the limit of a function is $f'(x) = \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h}.$ So I got $f'(a) = \lim_{h \rightarrow0} \frac{a^2 (\sin(\frac{1}{a+h}) - \sin(\frac{1}{a}))}{h} = 0$ at $x = a,$ because as $h \rightarrow0$, $\sin(\frac{1}{a+h}) = \sin(\frac{1}{a}).$ Am I doing it right??