The ternary rooted tree of Pythagorean triples never made sense to me and has no order that can be sensed just by looking at it. What makes more sense is a pattern of sets within the subset of triples where $GCD(A,B,C)$ is an odd square. This subset includes all primitives. Here is a sample:
$$\begin{array}{c|c|c|c|c|c|c|}
n & Triple_1 & Triple_2 & Triple_3 & Triple_4 & Triple_5 & Triple_6 \\ \hline
Set_1 & 3,4,5 & 5,12,13& 7,24,25& 9,40,41& 11,60,61 & 13,84,85 \\ \hline
Set_2 & 15,8,17 & 21,20,29 &27,36,45 &33,56,65 & 39,80,89 & 45,108,117 \\ \hline
Set_3 & 35,12,37 & 45,28,53 &55,48,73 &65,72,97 & 75,100,125 & 85,132,157 \\ \hline
Set_{4} &63,16,65 &77,36,85 &91,60,109 &105,88,137 &119,120,169 & 133,156,205 \\ \hline
Set_{5} &99,20,101 &117,44,125 &135,72,153 &153,104,185 &171,140,221 & 189,180,261 \\ \hline
Set_{6} &143,24,145 &165,52,173 &187,84,205 &209,120,241 &231,160,281 & 253,204,325 \\ \hline
\end{array}$$
The formula that generates these triples may be used to find successor or predecessor simply by increasing or decreasing the values of $n$ or $k$.
$$A=(2n-1)^2+2(2n-1)k \qquad B=2(2n-1)k+2k^2\qquad C=(2n-1)^2+2(2n-1)k+2k^2 $$