If $a,b$ are positive integers such that $\gcd(a,b)=1$, then show that $\gcd(a+b, a-b)=1$ or $2$ and $\gcd(a^2+b^2, a^2-b^2)=1$ or $2 $.
Progress
We have $\gcd(a,b)=1\implies \exists u,v\in \mathbb Z$ such that $au+bv=1\implies a^2u'+bv'=1, u',v'\in \mathbb Z$.
Let $\gcd(a+b, a-b)=d$. Then $\mid (a+b)x+(a-b)y, \forall x,y\in \mathbb Z$.
How to show $\gcd(a+b, a-b)=1$ or $2$ and $\gcd(a^2+b^2, a^2-b^2)=1$ or $2 $.