How can the following equation be proven? $\sum\limits_{p \le n; p \in P} \frac{\ln p}{p} \sim \ln(n) + O(1).$
I just wanna understand this sum Sum of reciprocal prime numbers
How can the following equation be proven? $\sum\limits_{p \le n; p \in P} \frac{\ln p}{p} \sim \ln(n) + O(1).$
I just wanna understand this sum Sum of reciprocal prime numbers
By partial summation and for Prime Number Theorem in the form $$\pi\left(x\right)=\frac{x}{\log\left(x\right)}+\frac{x}{\left(\log\left(x\right)\right)^{2}}+O\left(\frac{x}{\left(\log\left(x\right)\right)^{3}}\right)$$ you have $$\theta\left(N\right)=\underset{p\leq N}{\sum}\log\left(p\right)=\pi\left(N\right)\log\left(N\right)-\int_{2}^{N}\frac{\pi\left(t\right)}{t}dt=$$ $$=N+O\left(\frac{N}{\left(\log\left(N\right)\right)^{2}}\right)$$ so $$\underset{p\leq N}{\sum}\frac{\log\left(p\right)}{p}=\frac{\theta\left(N\right)}{N}+\int_{2}^{N}\frac{\theta\left(t\right)}{t^{2}}dt=$$ $$=1+O\left(\frac{1}{\left(\log\left(N\right)\right)^{2}}\right)+\int_{2}^{N}\frac{1}{t}dt+O\left(\int_{2}^{N}\frac{1}{t\left(\log\left(t\right)\right)^{2}}dt\right)=$$ $$=\log\left(N\right)+C+o\left(1\right).$$