If $a_0+a_1 x+ \ldots + a_ n x^ n$ is irreducible over $\mathbb Q$ then $a_n+ a_{n-1} x +\ldots+a_0x^{n}$ is irreducible over $\mathbb Q$.
Asked
Active
Viewed 558 times
2
-
In such cases uses Gauss's lemma. Choose a prime to do the job. – Haha Oct 08 '14 at 09:02
1 Answers
3
Assume $f(x)=g(x)h(x)$ with $\deg g=k$, $\deg h=m$. Then the other polynomial is $x^nf(1/x)$ and we have $x^nf(1/x)=x^kg(1/x)\cdot x^mh(1/x)$.

Hagen von Eitzen
- 374,180