0

Evaluate:

$$\lim_{x\to+\infty}(x+7)^\frac{1}{17}-x^\frac{1}{17}$$


I don't know where to begin to be honest. I know that when a limit evaluates to:

$$\infty-\infty$$

it simply means that it the limit is still indeterminate and could be anything. I cannot see a way to rewrite the limit so that it can be resolved.

Trajan
  • 5,194
  • 2
  • 27
  • 71
picaposo
  • 311

4 Answers4

11

Use the mean value theorem: $$ (x+7)^{1/17}-x^{1/17}=\frac{1}{17}\,(\xi_x)^{-16/17}\cdot7 $$ with $x\le \xi_x\le x+7$.

7

$$(x+c)^\alpha=x^\alpha\cdot(1+c/x)^\alpha=x^\alpha(1+c\alpha/x+o(1/x))=x^\alpha+c\alpha x^{\alpha-1}+o(x^{\alpha-1})$$

Did
  • 279,727
0

Hint:
Use the identity $$a^n-b^n={(a-b)(a^{n-1}+a^{n-2}b+a^{n-3}b^2+ \ldots +a b^{n-2}+b^{n-1})}$$ with $a=(x+7)^\frac{1}{17},\;\; b=x^\frac{1}{17}, \;\;n=17.$

M. Strochyk
  • 8,397
0

Using the Hint of Hans Lundmark, let $u=\sqrt[17]{x}$ and rewrite the limit as:

$$\lim_{u\to\infty}\sqrt[17]{u^{17}+1}-u$$

Then, $$\lim_{u\to\infty}\frac{\sqrt[17]{1+\frac{1}{u^{17}}}-1}{\frac{1}{u}}$$

Now, substitute again to $y=\frac{1}{u}$, so $u\to\infty\Rightarrow y\to0$ and $$\lim_{y\to0}\frac{\sqrt[17]{1+y^{17}}-1}{y}$$

Using L'Hopital, $$\lim_{y\to0}\frac{\sqrt[17]{1+y^{17}}-1}{y}=\lim_{y\to0}\frac{\frac{1}{17\cdot\sqrt[17]{1+y^{17}}^{16}}\cdot17y^{16}}{1}=\lim_{y\to0}\frac{y^{16}}{\sqrt[17]{1+y^{17}}^{16}}=0$$

cjferes
  • 2,216