In $\triangle ABC$, if $\sin^2{A}+\cos^2{C}=\cos^2{B}$,then $C=?$
We have $\sin^2{A}+\cos^2{C}=\cos^2{B} \implies 2\sin^2{A}+2\cos^2{C}=2\cos^2{B} \implies 1-\cos{2A}+\cos{2C}-1=\cos{2B}-1 \implies 1+\cos{2C}=\cos{2B}+\cos{2A} \implies 1+\cos{2C}=2\cos(A+B)\cos(A-B) \implies 1+\cos{2C}=2\cos(\pi-A)\cos(A-B)$, since $A+B+C=\pi$ $\implies 1+\cos{2C}=2\cos{A}\cos(A-B)$
How can I find $C$ ? Please help.