Can you show me a continuous function $f \colon \mathbb{R}^n\to\mathbb{R}^m$ that satisfies $f(a+b)=f(a)+f(b)$ but is not linear?
We have that $$f(0)=f(0+0)=2f(0)\implies f(0)=0\\ f(x-x)=f(0)=f(x)+f(-x)=0\implies f(-x)=-f(x)\\ f(nx)=f(x+x+\dots+x)=f(x)+\dots+f(x)=nf(x)\quad \forall n \in \mathbb{N}$$ But $$ f(-nx)=-f(nx)=-nf(x) $$ So: $$ f(ax)=af(x) \quad \forall a \in \mathbb{Z} $$