I was looking for the exact solutions of $\cos\frac{2\pi}{257}$, it lead me to the following expressions.
$A=-8\sqrt{514+18\sqrt{257}+12\sqrt{X}+4\sqrt{12593+561\sqrt{257}-98\sqrt{X}-400\sqrt{Y}}}-4\sqrt{514+18\sqrt{257}+12\sqrt{X}-4\sqrt{12593+561\sqrt{257}-98\sqrt{X}-400\sqrt{Y}}}-4\sqrt{514-18\sqrt{257}-12\sqrt{Y}+4\sqrt{12593-561\sqrt{257}-400\sqrt{X}+98\sqrt{Y}}}-4\sqrt{514+18\sqrt{257}-12\sqrt{X}+4\sqrt{12593+561\sqrt{257}+98\sqrt{X}+400\sqrt{Y}}}+\frac{1}{4}*[15+\sqrt{257}+2\sqrt{Y}+2\sqrt{257+15\sqrt{257}+16\sqrt{X}+14\sqrt{Y}}]*\sqrt{514-18\sqrt{257}+12\sqrt{Y}+4\sqrt{12593-561\sqrt{257}+400\sqrt{X}-98\sqrt{Y}}}$.
with $X=\frac{257+\sqrt{257}}{2}$, $Y=\frac{257-\sqrt{257}}{2}$
Using numerical computation, I noticed that :
$A=6\sqrt{514-18\sqrt{257}+12\sqrt{Y}+4\sqrt{12593-561\sqrt{257}+400\sqrt{X}-98\sqrt{Y}}}$
I did not succeed in doing the demonstration. Do you think it would be possible to demonstrate such a result?
Thank you and good luck.