The $r$th term $\displaystyle\frac{1\cdot3\cdot5\cdots(2n-1)}{2\cdot4\cdot6\cdots(2n+2)}$ where integer $r\ge1$
As the number of terms in the numerator $=$ the number of terms in the denominator $-1,$
If $\displaystyle S=\sum_{n=1}^\infty\frac{1\cdot3\cdot5\cdots(2n-1)}{2\cdot4\cdot6\cdots(2n+2)},$
Multiplying the numerator by the previous term of $1,3,5,\cdots$ (Arithmetic Series)
$\displaystyle -S=\sum_{n=1}^\infty\frac{(-1)1\cdot3\cdot5\cdots(2n-1)}{2\cdot4\cdot6\cdots(2n+2)}$
$\displaystyle=-\frac{-1}2+\sum_{n=0}^\infty\frac{(-1)1\cdot3\cdot5\cdots(2n-1)}{2\cdot4\cdot6\cdots(2n+2)}$
Now, $\displaystyle\sum_{n=0}^\infty\frac{(-1)1\cdot3\cdot5\cdots(2n-1)}{2\cdot4\cdot6\cdots(2n+2)}=(1-1)^{\frac12}-1$
Now follow Calculating $1+\frac13+\frac{1\cdot3}{3\cdot6}+\frac{1\cdot3\cdot5}{3\cdot6\cdot9}+\frac{1\cdot3\cdot5\cdot7}{3\cdot6\cdot9\cdot12}+\dots? $