3

The series is $$\frac{1}{2*4}+ \frac{1*3}{2*4*6}+ \frac{1*3*5}{2*4*6*8}+....$$

It continues to infinity.I tried multiplying with $2$ and dividing each term by$(3-1)$,$(5-3)$ etc,starting from the second term which gives me $$\frac{1}{8} -\frac{1}{4*6} -\frac{1}{4*6*8}-\frac{1}{4*6*8*10}$$.

Also if anybody is wondering the answer 0.5

2 Answers2

2

We have $$ \begin{align} \frac{1\cdot 3\cdot 5 \cdots(2n-1)}{2\cdot 4\cdot 6\cdots(2n+2)}&=\frac{1\cdot 2\cdot 3\cdot 4 \cdot 5\cdot6\cdots(2n-1)\cdot 2n}{(2\cdot 4\cdot 6\cdots (2n))^2(2n+2)}\\\\ &=\frac{(2n)!}{(2^{n} \cdot 1\cdot 2\cdot 3 \cdot 4 \cdots n)^2 \cdot (2n+2)}\\\\ & =\frac{(2n)!}{2^{2n} (n!)^2 \cdot (2n+2)}\\\\ &=\frac{1}{(2n+2)\,4^n}\binom{2n}{n}\\\\&=\frac{1}{4^n}\binom{2n}{n}-\frac{1}{4^{n+1}}\binom{2n+2}{n+1}. \end{align} $$ The series is then telescopic: $$\sum_{n=1}^{N}\frac{1\cdot 3\cdot 5 \cdots(2n-1)}{2\cdot 4\cdot 6\cdots(2n+2)}=\frac{1}{2}-\frac{1}{4^{N+1}}\binom{2N+2}{N+1}. $$As $N$ is great, one may prove that $$\frac{1}{4^{N+1}}\binom{2N+2}{N+1}=O\left(\frac{1}{\sqrt{N}}\right). $$ The series is thus equal to $\dfrac{1}{2}$:

$$\sum_{n=1}^{\infty}\frac{1\cdot 3\cdot 5 \cdots(2n-1)}{2\cdot 4\cdot 6\cdots(2n+2)}=\frac{1}{2}. $$

Olivier Oloa
  • 120,989
0

The $r$th term $\displaystyle\frac{1\cdot3\cdot5\cdots(2n-1)}{2\cdot4\cdot6\cdots(2n+2)}$ where integer $r\ge1$

As the number of terms in the numerator $=$ the number of terms in the denominator $-1,$

If $\displaystyle S=\sum_{n=1}^\infty\frac{1\cdot3\cdot5\cdots(2n-1)}{2\cdot4\cdot6\cdots(2n+2)},$

Multiplying the numerator by the previous term of $1,3,5,\cdots$ (Arithmetic Series)

$\displaystyle -S=\sum_{n=1}^\infty\frac{(-1)1\cdot3\cdot5\cdots(2n-1)}{2\cdot4\cdot6\cdots(2n+2)}$

$\displaystyle=-\frac{-1}2+\sum_{n=0}^\infty\frac{(-1)1\cdot3\cdot5\cdots(2n-1)}{2\cdot4\cdot6\cdots(2n+2)}$

Now, $\displaystyle\sum_{n=0}^\infty\frac{(-1)1\cdot3\cdot5\cdots(2n-1)}{2\cdot4\cdot6\cdots(2n+2)}=(1-1)^{\frac12}-1$

Now follow Calculating $1+\frac13+\frac{1\cdot3}{3\cdot6}+\frac{1\cdot3\cdot5}{3\cdot6\cdot9}+\frac{1\cdot3\cdot5\cdot7}{3\cdot6\cdot9\cdot12}+\dots? $