$z$ is a complex number and $z^2+z+1=0$.
$$z^{10}+\frac{1}{z^{10}}=?$$
For the solution:
- the roots of $z^2+z+1$ are: $z_1=-\frac12+\frac{\sqrt3}{2}i$ and $z_2=-\frac12-\frac{\sqrt3}{2}i$
- converting these to their trigonometrical forms, we get: $z_1=\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}$ and $z_2=\cos\frac{7\pi}{6}+i\sin\frac{7\pi}{6}$
- How do I proceed?