In reference to Kirill's answer, I will show that indeed $$ I(3) = \int_{1}^{\infty} \int_{1}^{\infty} \int_{1}^{\infty} \frac{1}{xyz} \frac{dx \, dy \, dz}{x+y+z-2} = \frac{7}{2}\zeta(3).$$
I will make the same change of variables I made in my answer to your other more recent question.
$$ \begin{align} I(3) &= \int_{1}^{\infty} \int_{1}^{\infty} \frac{1}{yz} \int_{1}^{\infty} \frac{1}{y+z-2}\left( \frac{1}{x} - \frac{1}{x+y+z-2} \right) \, dx \, dy \, dz \\ &= \int_{1}^{\infty} \int_{1}^{\infty} \frac{1}{yz} \frac{\log (y+z-1)}{y+z-2} \, dy \, dz \\ &= 2 \int_{1}^{\infty} \int_{1}^{z} \frac{1}{yz} \frac{\log (y+z-1)}{y+z-2} \, dy \, dz \\ &= 2 \int_{2}^{\infty} \int_{u-1}^{u^{2}/4} \frac{1}{v} \frac{\log(u-1)}{u-2} \frac{dv \, du}{\sqrt{u^{2}-4v}} \tag{1} \\ & = 4 \int_{2}^{\infty} \frac{\log(u-1)}{u-2}\int_{0}^{u-2} \frac{1}{u^{2}-t^{2}} \, dt \, du \tag{2} \\ &= 2 \int_{2}^{\infty} \frac{\log^{2}(u-1)}{u(u-2)} \, du \\ &= 2 \int_{1}^{\infty} \frac{\log^{2}(w)}{w^{2}-1} \, dw \\ &= 2 \int_{0}^{1} \frac{\log^{2}(s)}{1-s^{2}} \, ds \tag{3} \\ &= 2 \int_{0}^{1} \log^{2}(s) \sum_{n=0}^{\infty} s^{2n} \, ds \\ &= 2 \sum_{n=0}^{\infty} \int_{0}^{1} \log^{2}(s) s^{2n} \, ds \\ &= 4 \sum_{n=0}^{\infty} \frac{1}{(2n+1)^{3}} \\ &= 4 \left(\sum_{n=1}^{\infty} \frac{1}{n^{3}} - \sum_{n=1}^{\infty} \frac{1}{(2n)^{3}} \right) \\ &= 4 \left( \zeta(3) - \frac{\zeta(3)}{8}\right) \\ &= \frac{7}{2} \zeta(3) \end{align}$$
$(1)$ Make the change of variables $u=y+z, v=yz$.
$(2)$ Make the substitution $t^2 = u^{2}-4v$.
$(3)$ Make the substitution $s = \frac{1}{w}$.