The factors of the integrand and the denominator have power series expansions that converge near $0$. If you work out the first few terms, you get the following.
$\begin{align}
I& =\lim_{x\to 0}\dfrac{\displaystyle\int_{0}^{x}\sin{t}\ln{(1+t)}\,dt-\dfrac{x^3}{3}+\dfrac{x^4}{8}}{(x-\sin{x})(e^{x^2}-1)}\\
\\
& =\lim_{x\to 0}\dfrac{\displaystyle\int_{0}^{x}\left(t-\dfrac{t^3}{6}+\dfrac{t^5}{120}+O(t^7)\right)\cdot\left(t-\dfrac{t^2}{2}+\dfrac{t^3}{3}-\dfrac{t^4}{4}+O(t^5)\right)dt-\dfrac{x^3}{3}+\dfrac{x^4}{8}}{\left(\dfrac{x^3}{6}-\dfrac{x^5}{120}+O(x^7)\right)\left(x^2+\dfrac{x^4}{2}+O(x^6)\right)}\\
\\
& =\lim_{x\to 0}\dfrac{\displaystyle\int_{0}^{x}\left(t^2-\dfrac{t^3}{2}+\dfrac{t^4}{6}+O(t^5)\right)dt-\dfrac{x^3}{3}+\dfrac{x^4}{8}}{\left(\dfrac{x^3}{6}-\dfrac{x^5}{120}+O(x^7)\right)\left(x^2+\dfrac{x^4}{2}+O(x^6)\right)}\\
\\
& =\lim_{x\to 0}\dfrac{\dfrac{x^3}{3}-\dfrac{x^4}{8}+\dfrac{x^5}{30}+O(x^6)-\dfrac{x^3}{3}+\dfrac{x^4}{8}}{\dfrac{x^5}{6}+O(x^7)}\\
\\
&= \lim_{x\to 0}\dfrac{\dfrac{x^5}{30}+O(x^6)}{\dfrac{x^5}{6}+O(x^7)}\\
&= \dfrac{1}{5}
\end{align}$