I'm really getting stuck on this and would appreciate some help: $$ \lim_{x\ \to\ 0}\left[\,\tan\left(\,x\,\right) - \sin\left(\,x\,\right) \over x^{3}\,\right] $$ I know I need to change $\tan\left(\,x\,\right)$ into $\sin\left(\,x\,\right)/\cos\left(\,x\,\right)$ and turn $\sin\left(\,x\,\right)$ into $1 - \cos^{2}\left(\,x\,\right)$.
But then I get stuck.