In terms of multiple zeta values this integral is equal to
$$ 2 \zeta (\bar3,\bar1)+\zeta (\bar3,1)+6 \zeta (\bar2,\bar1)+3 \zeta (\bar2,1)+24 \zeta (\bar1,\bar1)+12 \zeta (\bar1,1)-6 \zeta (2,\bar1)-2 \zeta (3,\bar1)+\zeta(\bar3,\bar1,\bar1)+\zeta (\bar3,\bar1,1)+\zeta (\bar3,1,\bar1)+2 \zeta (\bar2,\bar1,\bar1)+2 \zeta (\bar2,\bar1,1)+2 \zeta (\bar2,1,\bar1)+6 \zeta (\bar1,\bar1,\bar1)+6 \zeta(\bar1,\bar1,1)+6 \zeta (\bar1,1,\bar1)-2 \zeta (2,\bar1,\bar1)-2 \zeta (2,\bar1,1)-2 \zeta (2,1,\bar1)-\zeta (3,\bar1,\bar1)-\zeta (3,\bar1,1)-\zeta(3,1,\bar1)+\zeta (\bar3,\bar1,\bar1,\bar1)+\zeta (\bar3,\bar1,1,\bar1)+\zeta (\bar3,1,\bar1,1)+\zeta (\bar2,\bar1,\bar1,\bar1)+\zeta (\bar2,\bar1,1,\bar1)+\zeta (\bar2,1,\bar1,1)+2\zeta (\bar1,\bar1,\bar1,\bar1)+2 \zeta (\bar1,\bar1,1,\bar1)+2 \zeta (\bar1,1,\bar1,1)-\zeta (2,\bar1,\bar1,\bar1)-\zeta (2,\bar1,1,\bar1)-\zeta (2,1,\bar1,1)-\zeta(3,\bar1,\bar1,\bar1)-\zeta (3,\bar1,1,\bar1)-\zeta (3,1,\bar1,1)-6 \zeta (3)+3 \zeta (\bar3)+12 \zeta (\bar2)+60 \zeta (\bar1)-12 \zeta (2)-\frac{1}{4}\zeta (4)+90 $$
Some of these may not have a closed form.
Explanation.
Every logarithm can be written as a single integral:
$$ \log x = -\int_x^1 \frac{dt}{t}, \qquad \log(1+a x) = \int_0^x \frac{du}{u+a^{-1}}. $$
In turn, every iterated integral over a simplex $0<t_n<\ldots<t_1<1$ of the form
$$ \int_0^1\frac{dt_1}{t_1-b_1}\int_0^{t_2}\frac{dt_2}{t_2-b_2}\int\cdots\int_0^{t_{n-1}}\frac{dt_n}{t_n-b_n} $$
can be written as a multiple zeta value when each $b$ is in $\{0,\pm1\}$.
The integral has the form
$$ \int_0^1dx\int_x^1\frac{dt_1}{t_1}\int_x^1 \frac{dt_2}{t_2} \int_0^x \frac{du_1}{u_1-1} \int_0^x \frac{du_2}{u_2-1} \int_0^x \frac{dv_1}{v_1+1} \int_0^x \frac{dv_2}{v_2+1}, $$
which can be brought into the interated-integral form above by splitting the integration domain into simplices and repeatedly integrating over some variables until only integrands of the form $\frac{dt}{t-b}$ remain. Carrying out this procedure gives the expression above in terms of multiple zeta values.