This answers a slightly different question. The original question seeks, instead, to determine
$$
\mathbb{P}\left( \left[ \begin{array}{c} X_1+X_2 > X_3 \\ X_1+X_3 > X_2 \\ X_2+X_3 > X_1 \end{array}\right] \right).
$$
Let $X_1$, $X_2$, $X_3$ be uniform discrete random variables over interval $[1,n]$. We are seeking to determine:
$$ \begin{eqnarray}
p = \mathbb{P}\left( \left[ \begin{array}{c} X_1+X_2 \geqslant X_3 \\ X_1+X_3 \geqslant X_2 \\ X_2+X_3 \geqslant X_1 \end{array}\right] \right) &=& \sum_{k_3=1}^n \sum_{k_2=1}^{n} \sum_{k_1=1}^{n} \frac{1}{n^3} \left[ \begin{array}{c} k_1+k_2 \geqslant k_3 \\ k_1+k_3 \geqslant k_2 \\ k_2+k_3 \geqslant k_1 \end{array}\right] \\
&=&
\sum_{k_3=1}^n \sum_{k_2=1}^{n} \sum_{k_1=\max(1,|k_3-k_2|)}^{\min(n, k_2+k_3)} \frac{1}{n^3} \\
&=& \sum_{k_3=1}^n \sum_{k_2=1}^{n} \frac{ \min(n,k_2+k_3) - \max(1,|k_3-k_2|) + 1}{n^3} \\
\end{eqnarray}
$$
Evaluating the above sum requires careful consideration of three cases, $k_2=k_3$, $k_2< k_3$ and $k_2 > k_3$, each of which needs to be further split to resolve $\min(n,k_2+k_3)$.
The end result is bound to be rational function of $n$, so can as well "guess" it:
$$
p = \frac{1}{2} + \frac{3n-2}{2 n^2}
$$
In[33]:= Table[
Sum[1/n^3, {k3, 1, n}, {k2, 1, n}, {k1, Max[1, Abs[k3 - k2]],
Min[n, k2 + k3]}], {n, 1, 12}] // FindSequenceFunction[#, n] &
Out[33]= (-2 + 3 n + n^2)/(2 n^2)