Let function $f(t)$ is represented by Fourier series, $$\frac{a_0}{2}+\sum_{n=1}^{\infty}(a_n\cos{\frac{2n\pi t}{b-a}}+b_n\sin{\frac{2n\pi t}{b-a}}),$$ where $a$ and $b$ are lower and upper boundary, $$a_0=\frac{2}{b-a}\int_{a}^{b}f(t)dt,$$ $$a_n=\frac{2}{b-a}\int_{a}^{b}f(t)cos\frac{2n\pi t}{b-a}dt,$$ $$b_n=\frac{2}{b-a}\int_{a}^{b}f(t)sin\frac{2n\pi t}{b-a}dt.$$
My question is, what conditions must be met so I can find derivative as (term by term) $$\frac{d}{dt}\sum_{n=1}^{\infty}(a_n\cos{\frac{2n\pi t}{b-a}}+b_n\sin{\frac{2n\pi t}{b-a}})=\frac{d}{dt}(\sum_{n=1}^{\infty}a_n\cos{\frac{2n\pi t}{b-a}}+\sum_{n=1}^{\infty}b_n\sin{\frac{2n\pi t}{b-a}})=\sum_{n=1}^{\infty}\frac{d}{dt}(a_n\cos{\frac{2n\pi t}{b-a}})+\sum_{n=1}^{\infty}\frac{d}{dt}(b_n\sin{\frac{2n\pi t}{b-a}})?$$