Currently I'm self studying limits. but I don't know how to get the answer to this question:
$$\lim _ { x\to \infty }\left(\sqrt{x^2+x+1}-\sqrt{x^2+1}\right)$$
can someone help me
Currently I'm self studying limits. but I don't know how to get the answer to this question:
$$\lim _ { x\to \infty }\left(\sqrt{x^2+x+1}-\sqrt{x^2+1}\right)$$
can someone help me
So our limit is:
$$\lim _ { x\to \infty }\left(\sqrt{x^2+x+1}-\sqrt{x^2+1}\right)$$
We can rationalize the function by multiplying by the conjugate.
$$\lim _ { x\to \infty }\left(\sqrt{x^2+x+1}-\sqrt{x^2+1}\right) = \left(\sqrt{x^2+x+1}-\sqrt{x^2+1}\right)*\frac{\left(\sqrt{x^2+x+1}+\sqrt{x^2+1}\right)}{\left(\sqrt{x^2+x+1}+\sqrt{x^2+1}\right)}$$
$$= \frac{\left(x^2 +x + 1 - x^2 - 1\right)}{\left(\sqrt{x^2+x+1}+\sqrt{x^2+1}\right)} = \frac{x}{\left(\sqrt{x^2+x+1}+\sqrt{x^2+1}\right)}$$
Now we divide both numerator and denominator by $x$.
$$\lim _ { x\to \infty }\frac{x}{\left(\sqrt{x^2+x+1}+\sqrt{x^2+1}\right)} = \frac{1}{\left(\sqrt{\frac{x^2}{x^2}+\frac{x}{x^2}+\frac{1}{x^2}}+\sqrt{\frac{x^2}{x^2}+\frac{1}{x^2}}\right)} = \frac{1}{\sqrt{1+0+0} + \sqrt{1+0}} = \frac{1}{2}$$
Set $\dfrac1x=h,$
$$\lim_{x\to\infty}(\sqrt{x^2+x+1}-\sqrt{x^2+1})$$
$$=\lim_{h\to0^+}\frac{\sqrt{1+h+h^2}-\sqrt{1+h^2}}h$$
Now rationalize the numerator
Hint:
$$\sqrt{x^2+x+1}-\sqrt{x^2+1}=\frac{\left(\sqrt{x^2+x+1}-\sqrt{x^2+1}\right)\left(\sqrt{x^2+x+1}+\sqrt{x^2+1}\right)}{\left(\sqrt{x^2+x+1}+\sqrt{x^2+1}\right)}\\=\frac{(x^2+x+1)-(x^2+1)}{\left(\sqrt{x^2+x+1}+\sqrt{x^2+1}\right)}\\ =\frac{x}{\left(\sqrt{x^2+x+1}+\sqrt{x^2+1}\right)}$$