$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle}
\newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\half}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left(\, #1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
$\ds{\sum_{r\ =\ 0}^{m}\pars{-1}^{r}{n \choose r}
=\pars{-1}^{m}{n - 1 \choose m}:\ {\large ?}}$.
\begin{align}&\color{#c00000}{\sum_{r\ =\ 0}^{m}\pars{-1}^{r}{n \choose r}}
=\sum_{r\ =\ 0}^{m}\pars{-1}^{r}\ \overbrace{\oint_{\verts{z}\ =\ 1}
{\pars{1 + z}^{n} \over z^{r + 1}}\,{\dd z \over 2\pi\ic}}^{\ds{=\ {n \choose r}}}
\\[5mm]&=\oint_{\verts{z}\ =\ 1}
{\pars{1 + z}^{n} \over z}\sum_{r\ =\ 0}^{m}\pars{-\,{1 \over z}}^{r}
\,{\dd z \over 2\pi\ic}
=\oint_{\verts{z}\ =\ 1}
{\pars{1 + z}^{n} \over z}{\pars{-1/z}^{m + 1} - 1 \over -1/z - 1}
\,{\dd z \over 2\pi\ic}
\\[5mm]&=\oint_{\verts{z}\ =\ 1}
{\pars{1 + z}^{n} \over z}\,{z^{m + 1} + \pars{-1}^{m} \over z^{m}\pars{1 + z}}
\,{\dd z \over 2\pi\ic}
\\[5mm]&=\ \underbrace{\oint_{\verts{z}\ =\ 1}\pars{1 + z}^{n - 1}
\,{\dd z \over 2\pi\ic}}_{\ds{=\ 0}}\ +\
\pars{-1}^{m}\
\underbrace{\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{n - 1} \over z^{m + 1}}
\,{\dd z \over 2\pi\ic}}_{\ds{=\ {n - 1 \choose m}}}
\end{align}
$$\color{#66f}{\large\sum_{r\ =\ 0}^{m}\pars{-1}^{r}{n \choose r}
=\pars{-1}^{m}{n - 1 \choose m}}
$$