How can one prove that every propositional tautology, expressed with
the connectives
'$\neg$' and '$\rightarrow$', can be proved with the axioms below?
(P0. $\phi \to \phi$)
P1. $\phi \to \left( \psi \to \phi \right)$
P2. $\left( \phi \to \left( \psi \rightarrow \xi \right) \right) \to \left( \left( \phi \to \psi \right) \to \left( \phi \to \xi \right) \right)$
P3. $\left ( \lnot \phi \to \lnot \psi \right) \to \left( \psi \to \phi \right)$
I'm especially interested in an eventual math-style proof:
Since all logical expressions have equivalents in form of elements in a Boolean ring with respect to XOR, AND and TRUE, and any tautology reduces to 1 in that ring, the Hilbert axioms can prove every tautology if they can prove all the axioms for a Boolean ring for the equivalents of $(1,\oplus,\cdot)$ expressed in only $(\neg,\rightarrow)$.
S1. $1\leftrightarrow (A\rightarrow A)$
S2. $AB\leftrightarrow\neg(A\rightarrow \neg B)$
S3. $A+B\leftrightarrow((A\rightarrow B)\rightarrow\neg(\neg A\rightarrow\neg B)) $
How to use P1-P3 to prove axioms of Boolean rings expressed with the substitution rules S1-S3? For example:
- the law of commutativity for multiplication: $\neg(A\rightarrow\neg B)\rightarrow\neg(B\rightarrow\neg A)$
- the law of multiplicative idempotence: $\neg(A\rightarrow\neg A)\rightarrow A$ and $A\rightarrow\neg(A\rightarrow\neg A)$