5

Do we know anything about this integrals?

$$ \begin{align} I_1(x) = \int \frac{1}{\operatorname{artanh}(x)} \, dx \\ I_2(x) = \int \frac{1}{\operatorname{arcoth}(x)} \, dx \end{align}$$

Similar integrals.

$$ \begin{align} \int \operatorname{artanh}(x) \, dx & = x \operatorname{artanh}(x) + \frac12 \ln(1-x^2) + C, \\ \int \operatorname{arcoth}(x) \, dx & = x \operatorname{arcoth}(x) + \frac12 \ln(1-x^2) + C, \\ \int \frac{1}{\operatorname{arsinh}(x)} \, dx & = \operatorname{Chi}(\operatorname{arsinh}(x)) + C, \\ \int \frac{1}{\operatorname{arcosh}(x)} \, dx & = \operatorname{Shi}(\operatorname{arcosh}(x)) + C, \\ \end{align}$$

where $\operatorname{Chi}$ is the hyperbolic cosine integral, and $\operatorname{Shi}$ is the hyperbolic sine integral.

I found nothing with Maple or Mathematica. As I see some kind of "hyperbolic tangent integral" is not defined.

user153012
  • 12,240
  • Note: the prefix for inverse hyperbolic functions is $\rm{ar}$, not $\rm{arc}$ (which is for inverse trig. functions). – beep-boop Sep 26 '14 at 11:29
  • @alexqwx As you wish. By the way also note that computer algebra systems use arctanh instead of artanh. For example arctanh in Maple or ArcTanh in Mathematica. – user153012 Sep 26 '14 at 11:34
  • 3
    @user153012 This is because arc refers to the arc that the given angle subtends on the unit circle. On the unit hyperbola, there is no direct relationship between the inverse hyperbolic functions with the subtended angle, but (as in the trigonometric setting) there is a relationship with the area bounded by the $x$-axis, the arc of the hyperbola and the segment connecting the origin with the reference point on the hyperbola. – Travis Willse Sep 26 '14 at 11:54

1 Answers1

3

Approach $1$:

For $\int\dfrac{1}{\text{arcoth }x}dx$ ,

Let $u=\text{arcoth }x$ ,

Then $\int\dfrac{1}{\text{arcoth }x}dx$

$=\int\dfrac{1}{u}d(\coth u)$

$=\dfrac{\coth u}{u}-\int\coth u~d\left(\dfrac{1}{u}\right)$

$=\dfrac{\coth u}{u}+\int\dfrac{\coth u}{u^2}du$

$=\dfrac{\coth u}{u}+\int\dfrac{e^{2u}+1}{u^2(e^{2u}-1)}du$

$=\dfrac{\coth u}{u}-\int\dfrac{1}{u^2(e^{-2u}-1)}du+\int\dfrac{1}{u^2(e^{2u}-1)}du$

$=\dfrac{\coth u}{u}-\int\dfrac{1}{u^2}\sum\limits_{n=0}^\infty\dfrac{B_n(-2u)^{n-1}}{n!}du+\int\dfrac{1}{u^2}\sum\limits_{n=0}^\infty\dfrac{B_n(2u)^{n-1}}{n!}du$ (with the formula in http://en.wikipedia.org/wiki/Bernoulli_number#Generating_function)

$=\dfrac{\coth u}{u}+\int\sum\limits_{n=0}^\infty\dfrac{(-1)^n2^{n-1}B_nu^{n-3}}{n!}du+\int\sum\limits_{n=0}^\infty\dfrac{2^{n-1}B_nu^{n-3}}{n!}du$

$=\dfrac{\coth u}{u}+\int\sum\limits_{n=0}^\infty\dfrac{4^nB_{2n}u^{2n-3}}{(2n)!}du$

$=\dfrac{\coth u}{u}+\int\left(\dfrac{1}{u^3}+\dfrac{1}{3u}+\sum\limits_{n=2}^\infty\dfrac{4^nB_{2n}u^{2n-3}}{(2n)!}\right)du$

$=\dfrac{\coth u}{u}-\dfrac{1}{2u^2}+\dfrac{\ln u}{3}+\sum\limits_{n=2}^\infty\dfrac{2^{2n-1}B_{2n}u^{2n-2}}{(2n)!(n-1)}+C$

$=\dfrac{x}{\text{arcoth }x}-\dfrac{1}{2~\text{arcoth}^2x}+\dfrac{\ln\text{arcoth }x}{3}+\sum\limits_{n=2}^\infty\dfrac{2^{2n-1}B_{2n}\text{arcoth}^{2n-2}x}{(2n)!(n-1)}+C$

For $\int\dfrac{1}{\text{artanh }x}dx$ ,

Let $u=\text{artanh }x$ ,

Then $\int\dfrac{1}{\text{artanh }x}dx$

$=\int\dfrac{1}{u}d(\tanh u)$

$=\dfrac{\tanh u}{u}-\int\tanh u~d\left(\dfrac{1}{u}\right)$

$=\dfrac{\tanh u}{u}+\int\dfrac{\tanh u}{u^2}du$

$=\dfrac{\tanh u}{u}+\int\dfrac{1}{u^2}\sum\limits_{n=1}^\infty\dfrac{4^n(4^n-1)B_{2n}u^{2n-1}}{(2n)!}du$ (with the formula in http://en.wikipedia.org/wiki/Hyperbolic_function#Taylor_series_expressions)

$=\dfrac{\tanh u}{u}+\int\sum\limits_{n=1}^\infty\dfrac{4^n(4^n-1)B_{2n}u^{2n-3}}{(2n)!}du$

$=\dfrac{\tanh u}{u}+\int\left(\dfrac{1}{u}+\sum\limits_{n=2}^\infty\dfrac{4^n(4^n-1)B_{2n}u^{2n-3}}{(2n)!}\right)du$

$=\dfrac{\tanh u}{u}+\ln u+\sum\limits_{n=2}^\infty\dfrac{2^{2n-1}(4^n-1)B_{2n}u^{2n-2}}{(2n)!(n-1)}+C$

$=\dfrac{x}{\text{artanh }x}+\ln\text{artanh }x+\sum\limits_{n=2}^\infty\dfrac{2^{2n-1}(4^n-1)B_{2n}\text{artanh}^{2n-2}x}{(2n)!(n-1)}+C$

Approach $2$:

For $\int\dfrac{1}{\text{arcoth }x}dx$ ,

Let $u=\text{arcoth }x$ ,

Then $\int\dfrac{1}{\text{arcoth }x}dx$

$=\int\dfrac{1}{u}d(\coth u)$

$=\dfrac{\coth u}{u}-\int\coth u~d\left(\dfrac{1}{u}\right)$

$=\dfrac{\coth u}{u}+\int\dfrac{\coth u}{u^2}du$

$=\dfrac{\coth u}{u}+\int\dfrac{1}{u^3}+\int\sum\limits_{n=1}^\infty\dfrac{2}{u(u^2+n^2\pi^2)}du$ (use Mittag-Leffler Expansion of hyperbolic cotangent)

$=\dfrac{\coth u}{u}-\dfrac{1}{2u^2}+\int\sum\limits_{n=1}^\infty\dfrac{2}{n^2\pi^2u}du-\int\sum\limits_{n=1}^\infty\dfrac{2u}{n^2\pi^2(n^2\pi^2+u^2)}du$

$=\dfrac{\coth u}{u}-\dfrac{1}{2u^2}+\sum\limits_{n=1}^\infty\dfrac{2\ln u}{n^2\pi^2}-\sum\limits_{n=1}^\infty\dfrac{\ln(n^2\pi^2+u^2)}{n^2\pi^2}+C$

$=\dfrac{\ln\text{arcoth }x}{3}+\dfrac{x}{\text{arcoth }x}-\dfrac{1}{2(\text{arcoth }x)^2}-\sum\limits_{n=1}^\infty\dfrac{\ln(n^2\pi^2+(\text{arcoth }x)^2)}{n^2\pi^2}+C$

For $\int\dfrac{1}{\text{artanh }x}dx$ ,

Let $u=\text{artanh }x$ ,

Then $\int\dfrac{1}{\text{artanh }x}dx$

$=\int\dfrac{1}{u}d(\tanh u)$

$=\dfrac{\tanh u}{u}-\int\tanh u~d\left(\dfrac{1}{u}\right)$

$=\dfrac{\tanh u}{u}+\int\dfrac{\tanh u}{u^2}du$

$=\dfrac{\tanh u}{u}+\int\sum\limits_{n=0}^\infty\dfrac{8}{u((2n+1)^2\pi^2+4u^2)}du$ (use Mittag-Leffler Expansion of hyperbolic tangent)

$=\dfrac{\tanh u}{u}+\int\sum\limits_{n=0}^\infty\dfrac{8}{(2n+1)^2\pi^2u}du-\int\sum\limits_{n=0}^\infty\dfrac{32u}{(2n+1)^2\pi^2((2n+1)^2\pi^2+4u^2)}du$

$=\dfrac{\tanh u}{u}+\sum\limits_{n=0}^\infty\dfrac{8\ln u}{(2n+1)^2\pi^2}-\sum\limits_{n=0}^\infty\dfrac{4\ln((2n+1)^2\pi^2+4u^2)}{(2n+1)^2\pi^2}+C$

$=\ln\text{artanh }x+\dfrac{x}{\text{artanh }x}-\sum\limits_{n=0}^\infty\dfrac{4\ln((2n+1)^2\pi^2+4(\text{artanh }x)^2)}{(2n+1)^2\pi^2}+C$

Harry Peter
  • 7,819
  • 1
    With some help from Mathematica I get $$\sum_{n=2}^\infty\dfrac{4^nB_{2n}u^{2n-3}}{(2n)!}=\frac{3u\coth(u)-u^2-3}{3u^3}.$$ But I don't know, how to integrate it. It leads to the integral $\int \frac{1}{\left(e^{2 u}-1\right) u^2} , du$. – user153012 Oct 12 '14 at 09:46
  • @user153012: Sorry, I have some typo of some cofficients. I corrected. – Harry Peter Oct 14 '14 at 14:15
  • Harry, maybe you can use the following. $$\sum_{n=2}^\infty\dfrac{4^n(4^n-1)B_{2n}u^{2n-3}}{(2n)!}=\frac{2u\coth(2u)-u \coth(u)-u^2}{u^3‌​}.$$ – user153012 Oct 15 '14 at 13:54