2

Let $(x_n)$ and $(y_n)$ be bounded sequences such that $x_n ≤ y_n$ for all $n \in \mathbb{N}$. Show that $\limsup x_n ≤ \limsup y_n$ and $\liminf x_n ≤ \liminf y_n$.

1 Answers1

4

Fix an index $k$. Then $$ m \ge k \implies x_m \le y_m \le \sup_{n \ge k} y_n.$$ Since this is true for all $m \ge k$ you have $$ \sup_{m \ge k} x_m \le \sup_{n \ge k} y_n.$$ Now take the limit on both sides as $k \to \infty$.

Umberto P.
  • 52,165