Is $\mathbb{Q}(\sqrt{2}, \sqrt{5})=\mathbb{Q}(\sqrt{10})$ in field extension?
We know that, $\mathbb{Q}(\sqrt{2}, \sqrt{5})=\mathbb{Q}(\sqrt{2}+ \sqrt{5})$. Also, $\mathbb{Q}(\sqrt{2}, \sqrt{5})=\mathbb{Q}(a\sqrt{2}+ b\sqrt{5})$ where $a,b \in \mathbb{Q}$.
If the question is true, then for which values of $a$ & $b$ can $\sqrt{10}$ be expressed in the form $a\sqrt{2}+ b\sqrt{5}$ where $a,b \in \mathbb{Q}$