0

Prove ${2n\choose n}=\sum\limits_{k=0}^n {n\choose k}^2$


  • My Approach: I will be making use of $$\tag 1\quad{m+n\choose r} = {m\choose 0}{n \choose r} + {m\choose 1}{n\choose r- 1} + \cdot\cdot\cdot + {m\choose r}{n \choose 0}$$ and $$\tag 2{a \choose b}={a\choose a-b}$$

By (1) $${2n\choose n} = {n+n\choose n}= {n\choose 0}{n\choose n}+{n\choose 1}{n\choose n-1}+\cdot\cdot\cdot + {n\choose n}{n\choose 0}$$

By (2) $${2n\choose n} = {n\choose 0}^2 + {n\choose 1}^2 + \cdot\cdot\cdot + {n\choose n}^2$$

Then $${2n\choose n}=\sum\limits_{k=0}^n {n\choose k}^2$$


Please have a look at my solution and give me any hints and\or suggestions you may have.

Théophile
  • 24,627

1 Answers1

1

Using the fact that $\sum_{k=0}^{l}\binom{n}{k}\binom{m}{l-k}=\binom{n+m}{l}$. Substituting $l,m=n$ and seeing that $\binom{n}{k}=\binom{n}{n-k}$.

Best regards.