0

Let $A$ be a $n \times n$ matrix. Show that if $A^2=O$ then $A$ is singular, but $I−A$ is nonsingular and $(I−A)^{-1}=I+A$.

What I have tiedy: $(I-A)*(I+A)=I-A+A-A^2$

$=I-A^2$

$=I-0$ since A^2=0

$=I$

Therefore $I-A$ is nonsingular.

I am not sure if is complete and correct.

eniid15
  • 145

1 Answers1

0

$A^2 = O \implies \det(A)\det(A) = \det(A^2) = 0$ So $\det(A) = 0$ and $A$ is singular.

$(I-A)(I + A) = I + A - A - A^2 = I$ the same is true for $(I+A)(I-A)$ so $I - A$ is invertible with inverse $I + A$.

Mustafa Said
  • 4,137