\begin{align} & \sum\limits_{n=0}^{\infty }{\frac{1\cdot 3\cdot 5...(2n-1)}{2\cdot 4\cdot 6...(2n+2)}} \ & \text{ordering} \ & a_{n}=\frac{1\cdot 3\cdot 5...(2n-1)}{2\cdot 4\cdot 6...(2n+2)}=\frac{1\cdot 3\cdot 5...(2n-3)(2n-1)\cdot 1}{2\cdot 4\cdot 6...(2n-2)(2n)(2n+2)}= \ & \underbrace{\left( 1-\frac{1}{2} \right)\left( 1-\frac{1}{4} \right)...\left( 1-\frac{1}{2n} \right)}{n\text{ times}}\frac{1}{(2n+2)} \ & \text{clearly} \ & \left( 1-\frac{1}{2} \right)^{n}\frac{1}{(2n+2)}\le a{n}\le \left( 1-\frac{1}{2n} \right)^{n}\frac{1}{(2n+2)} \ & \text{Root test} \ & \sqrt[n]{\left( 1-\frac{1}{2} \right)^{n}}\frac{1}{\sqrt[n]{(2n+2)}}\le \sqrt[n]{a_{n}}\le \sqrt[n]{\left( 1-\frac{1}{2n} \right)^{n}}\frac{1}{\sqrt[n]{(2n+2)}} \ & n\to \infty \ & \frac{1}{2}\le \underset{n\to \infty }{\mathop{\lim }},\sqrt[n]{a_{n}}\le 1 \ & \text{nothing :(} \ & \text{Ratio test} \ & \frac{a_{n}}{a_{n-1}}=\frac{1\cdot 3\cdot 5...(2n-3)(2n-1)}{2\cdot 4\cdot 6...(2n)(2n+2)}\centerdot \frac{2\cdot 4\cdot 6...(2(n-1)+2)}{1\cdot 3\cdot 5...(2(n-1)-1)}=\frac{2n-1}{2n+2} \ & \underset{n\to \infty }{\mathop{\lim }},\frac{a_{n}}{a_{n-1}}=1 \ & \text{nothing again} \ \end{align}
Any suggestions?