Here's my attempt:
- $f(A∩B) = f(\{x|x∈A∧x∈B\}) = \{f(x)|x∈\{x|x∈A∧x∈B\}\}$
- $f(A)∩f(B) = f(\{x|x∈A\}) ∩ f(\{x|x∈B\}) = \{f(x)|x∈\{x|x∈A\}\} ∩ \{f(x)|x∈\{x|x∈B\}\} = \{x|x∈\{f(x)|x∈\{x|x∈A\}\}∧x∈\{f(x)|x∈\{x|x∈B\}\}\}$
And now I'm stuck. Please help.
Here's my attempt:
And now I'm stuck. Please help.
You have $$ A\cap B\subset A\implies f(A\cap B)\subset f(A),\\ A\cap B\subset B\implies f(A\cap B)\subset f(B) $$ so it follows that $f(A\cap B)\subset f(A)\cap f(B)$.