How can I prove that $$\det(A) = \frac{ 1 }{ 2 } \begin{vmatrix}\operatorname{tr}(A) & 1 \\ \operatorname{tr}(A^{2}) & \operatorname{tr}(A)\end{vmatrix}$$ where vertical bars mean the determinant?
This is what I have so far.
Let $A = \left[\begin{matrix}a & b \\ c & d\end{matrix}\right]$. Then $\det(A) = \frac{ 1 }{ ad-bc } \left[\begin{matrix} d & -b \\ -c & a\end{matrix}\right]$. As such, $\operatorname{tr}(A) = a+d$, $ad+bc=2$ and $d=a=a+d$.
$det(A)=ad-bc$
– mickey4691 Sep 20 '14 at 22:36