Prove $n^2 < n!$.
This is what I have gotten so far
basis step: $p(4)$ is true Inductive Hypothesis assume $p(k)$ true for $k \ge 4$
Inductive Step $p(k+1)$ : $(k+1)^2 < (k+1)!$
$$(k+1)^2 =k^2 + 2k + 1 < k! + 2k +1$$
Can someone please explain the last step this is from text, I need help understanding this, forgive me for the formatting error Im still learning